Simultaneous Concept Learning of Fuzzy Rules
نویسندگان
چکیده
FuzzyBexa was the first algorithm to use a set covering approach for induction of fuzzy classification rules. It followed an iterated concept learning strategy, where rules are induced for each concept in turn. We present a new algorithm to allow also simultaneous concept learning and the induction of ordered fuzzy rule sets. When a proper rule evaluation function is used, simultaneous concept learning performs far better than iterated concept learning with respect to rule set size, rule complexity, search complexity, and classification accuracy. We provide empirical results of five experiments on nine data sets and also show that the algorithm compares favourably to other well known concept learners.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملFuzzy Sequential Patterns Summarization with Lattice Structure
Data mining is new but an interdisciplinary field utilizing statistics, machine learning, and other methods. In recent years, fuzzy logic has also been applied to augment data mining. The application of fuzzy logics makes the mining results more understandable and interpretable, apart from being useful and informative. Fuzzy rules are useful to summarize large databases. Several studies are don...
متن کاملFuzzy set covering as a new paradigm for the induction of fuzzy classification rules
In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of “imprecise” mathematics. In the middle to late 1980’s the success of fuzzy controllers bro...
متن کاملFuzzy Clustering for Finding Fuzzy Partitions of Many-Valued Attribute Domains in a Concept Analysis Perspective
Although an overall knowledge discovery process consists of a distinct pre-processing stage followed by the data mining step, it seems that existing formal concept analysis (FCA) and association rules mining (ARM) approaches, dealing with many-valued contexts, mainly focus on the data mining stage. An “intelligent” pre-processing of input contexts is often absent in existing FCA/ARM approaches,...
متن کاملImproving Expressivity of Inductive Logic Programming by Learning Different Kinds of Fuzzy Rules
Introducing fuzzy predicates in inductive logic programming may serve two different purposes: allowing for more adaptability when learning classical rules or getting more expressivity by learning fuzzy rules. This latter concern is the topic of this paper. Indeed, introducing fuzzy predicates in the antecedent and in the consequent of rules may convey different non-classical meanings. The paper...
متن کامل